3.15.66 \(\int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx\) [1466]

3.15.66.1 Optimal result
3.15.66.2 Mathematica [A] (verified)
3.15.66.3 Rubi [A] (verified)
3.15.66.4 Maple [A] (verified)
3.15.66.5 Fricas [A] (verification not implemented)
3.15.66.6 Sympy [F]
3.15.66.7 Maxima [F(-2)]
3.15.66.8 Giac [A] (verification not implemented)
3.15.66.9 Mupad [B] (verification not implemented)

3.15.66.1 Optimal result

Integrand size = 21, antiderivative size = 200 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {2 a^3 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}-\frac {4 a b^2 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}+\frac {\cos (c+d x)}{2 (a+b)^2 d (1-\sin (c+d x))}-\frac {\cos (c+d x)}{2 (a-b)^2 d (1+\sin (c+d x))}-\frac {a^2 b \cos (c+d x)}{\left (a^2-b^2\right )^2 d (a+b \sin (c+d x))} \]

output
-2*a^3*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/(a^2-b^2)^(5/2)/d- 
4*a*b^2*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/(a^2-b^2)^(5/2)/d 
+1/2*cos(d*x+c)/(a+b)^2/d/(1-sin(d*x+c))-1/2*cos(d*x+c)/(a-b)^2/d/(1+sin(d 
*x+c))-a^2*b*cos(d*x+c)/(a^2-b^2)^2/d/(a+b*sin(d*x+c))
 
3.15.66.2 Mathematica [A] (verified)

Time = 0.61 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.84 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\frac {-\frac {2 a \left (a^2+2 b^2\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}+\sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{(a+b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )}+\frac {1}{(a-b)^2 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )}\right )-\frac {a^2 b \cos (c+d x)}{(a-b)^2 (a+b)^2 (a+b \sin (c+d x))}}{d} \]

input
Integrate[Tan[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]
 
output
((-2*a*(a^2 + 2*b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^ 
2 - b^2)^(5/2) + Sin[(c + d*x)/2]*(1/((a + b)^2*(Cos[(c + d*x)/2] - Sin[(c 
 + d*x)/2])) + 1/((a - b)^2*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))) - (a^2 
*b*Cos[c + d*x])/((a - b)^2*(a + b)^2*(a + b*Sin[c + d*x])))/d
 
3.15.66.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 3210, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^2}{(a+b \sin (c+d x))^2}dx\)

\(\Big \downarrow \) 3210

\(\displaystyle \int \left (-\frac {a^2}{\left (a^2-b^2\right ) (a+b \sin (c+d x))^2}-\frac {2 a b^2}{\left (a^2-b^2\right )^2 (a+b \sin (c+d x))}-\frac {1}{2 (a+b)^2 (\sin (c+d x)-1)}+\frac {1}{2 (a-b)^2 (\sin (c+d x)+1)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {4 a b^2 \arctan \left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}-\frac {a^2 b \cos (c+d x)}{d \left (a^2-b^2\right )^2 (a+b \sin (c+d x))}-\frac {2 a^3 \arctan \left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{5/2}}+\frac {\cos (c+d x)}{2 d (a+b)^2 (1-\sin (c+d x))}-\frac {\cos (c+d x)}{2 d (a-b)^2 (\sin (c+d x)+1)}\)

input
Int[Tan[c + d*x]^2/(a + b*Sin[c + d*x])^2,x]
 
output
(-2*a^3*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - b^2)^(5/ 
2)*d) - (4*a*b^2*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/((a^2 - 
 b^2)^(5/2)*d) + Cos[c + d*x]/(2*(a + b)^2*d*(1 - Sin[c + d*x])) - Cos[c + 
 d*x]/(2*(a - b)^2*d*(1 + Sin[c + d*x])) - (a^2*b*Cos[c + d*x])/((a^2 - b^ 
2)^2*d*(a + b*Sin[c + d*x]))
 

3.15.66.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3210
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_ 
), x_Symbol] :> Int[ExpandIntegrand[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^m/ 
(1 - Sin[e + f*x]^2)^(p/2)), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - 
b^2, 0] && IntegersQ[m, p/2]
 
3.15.66.4 Maple [A] (verified)

Time = 0.82 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.81

method result size
derivativedivides \(\frac {-\frac {1}{\left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{\left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {2 a \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}+a b}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a}+\frac {\left (a^{2}+2 b^{2}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2}}}{d}\) \(162\)
default \(\frac {-\frac {1}{\left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{\left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {2 a \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{2}+a b}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a}+\frac {\left (a^{2}+2 b^{2}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2}}}{d}\) \(162\)
risch \(\frac {2 i \left (3 a^{3} {\mathrm e}^{i \left (d x +c \right )}+4 i a^{2} b \,{\mathrm e}^{2 i \left (d x +c \right )}-i b^{3} {\mathrm e}^{2 i \left (d x +c \right )}+2 a \,b^{2} {\mathrm e}^{3 i \left (d x +c \right )}+2 i a^{2} b +i b^{3}+a^{3} {\mathrm e}^{3 i \left (d x +c \right )}\right )}{\left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +2 a \,{\mathrm e}^{i \left (d x +c \right )}\right ) \left (a^{2}-b^{2}\right )^{2} d}+\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {2 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}-\frac {a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}-\frac {2 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}\) \(476\)

input
int(sec(d*x+c)^2*sin(d*x+c)^2/(a+b*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(-1/(a-b)^2/(tan(1/2*d*x+1/2*c)+1)-1/(a+b)^2/(tan(1/2*d*x+1/2*c)-1)-2* 
a/(a-b)^2/(a+b)^2*((tan(1/2*d*x+1/2*c)*b^2+a*b)/(tan(1/2*d*x+1/2*c)^2*a+2* 
b*tan(1/2*d*x+1/2*c)+a)+(a^2+2*b^2)/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/ 
2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))))
 
3.15.66.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 569, normalized size of antiderivative = 2.84 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\left [-\frac {2 \, a^{4} b - 4 \, a^{2} b^{3} + 2 \, b^{5} + 2 \, {\left (2 \, a^{4} b - a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{2} + {\left ({\left (a^{3} b + 2 \, a b^{3}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{4} + 2 \, a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (-\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} - 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) - 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )\right )}}, -\frac {a^{4} b - 2 \, a^{2} b^{3} + b^{5} + {\left (2 \, a^{4} b - a^{2} b^{3} - b^{5}\right )} \cos \left (d x + c\right )^{2} - {\left ({\left (a^{3} b + 2 \, a b^{3}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{4} + 2 \, a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) - {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{6} b - 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} d \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{7} - 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} - a b^{6}\right )} d \cos \left (d x + c\right )}\right ] \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="frica 
s")
 
output
[-1/2*(2*a^4*b - 4*a^2*b^3 + 2*b^5 + 2*(2*a^4*b - a^2*b^3 - b^5)*cos(d*x + 
 c)^2 + ((a^3*b + 2*a*b^3)*cos(d*x + c)*sin(d*x + c) + (a^4 + 2*a^2*b^2)*c 
os(d*x + c))*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*s 
in(d*x + c) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c)) 
*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) 
- 2*(a^5 - 2*a^3*b^2 + a*b^4)*sin(d*x + c))/((a^6*b - 3*a^4*b^3 + 3*a^2*b^ 
5 - b^7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5*b^2 + 3*a^3*b^4 - a*b^ 
6)*d*cos(d*x + c)), -(a^4*b - 2*a^2*b^3 + b^5 + (2*a^4*b - a^2*b^3 - b^5)* 
cos(d*x + c)^2 - ((a^3*b + 2*a*b^3)*cos(d*x + c)*sin(d*x + c) + (a^4 + 2*a 
^2*b^2)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a 
^2 - b^2)*cos(d*x + c))) - (a^5 - 2*a^3*b^2 + a*b^4)*sin(d*x + c))/((a^6*b 
 - 3*a^4*b^3 + 3*a^2*b^5 - b^7)*d*cos(d*x + c)*sin(d*x + c) + (a^7 - 3*a^5 
*b^2 + 3*a^3*b^4 - a*b^6)*d*cos(d*x + c))]
 
3.15.66.6 Sympy [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\int \frac {\sin ^{2}{\left (c + d x \right )} \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{2}}\, dx \]

input
integrate(sec(d*x+c)**2*sin(d*x+c)**2/(a+b*sin(d*x+c))**2,x)
 
output
Integral(sin(c + d*x)**2*sec(c + d*x)**2/(a + b*sin(c + d*x))**2, x)
 
3.15.66.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="maxim 
a")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 
3.15.66.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.26 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {2 \, {\left (\frac {{\left (a^{3} + 2 \, a b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 4 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3 \, a^{2} b}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a\right )} {\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )}}\right )}}{d} \]

input
integrate(sec(d*x+c)^2*sin(d*x+c)^2/(a+b*sin(d*x+c))^2,x, algorithm="giac" 
)
 
output
-2*((a^3 + 2*a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*t 
an(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a 
^2 - b^2)) + (a^3*tan(1/2*d*x + 1/2*c)^3 + 2*a*b^2*tan(1/2*d*x + 1/2*c)^3 
+ a^2*b*tan(1/2*d*x + 1/2*c)^2 + 2*b^3*tan(1/2*d*x + 1/2*c)^2 + a^3*tan(1/ 
2*d*x + 1/2*c) - 4*a*b^2*tan(1/2*d*x + 1/2*c) - 3*a^2*b)/((a*tan(1/2*d*x + 
 1/2*c)^4 + 2*b*tan(1/2*d*x + 1/2*c)^3 - 2*b*tan(1/2*d*x + 1/2*c) - a)*(a^ 
4 - 2*a^2*b^2 + b^4)))/d
 
3.15.66.9 Mupad [B] (verification not implemented)

Time = 15.69 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.56 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sin (c+d x))^2} \, dx=-\frac {\frac {6\,a^2\,b}{{\left (a^2-b^2\right )}^2}+\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (4\,a\,b^2-a^3\right )}{{\left (a^2-b^2\right )}^2}-\frac {2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (a^2+2\,b^2\right )}{a^4-2\,a^2\,b^2+b^4}-\frac {2\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (a^2+2\,b^2\right )}{{\left (a^2-b^2\right )}^2}}{d\,\left (-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,b\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+a\right )}-\frac {2\,a\,\mathrm {atan}\left (\frac {\frac {a\,\left (a^2+2\,b^2\right )\,\left (2\,a^4\,b-4\,a^2\,b^3+2\,b^5\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}+\frac {2\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2+2\,b^2\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}}{2\,a^3+4\,a\,b^2}\right )\,\left (a^2+2\,b^2\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \]

input
int(sin(c + d*x)^2/(cos(c + d*x)^2*(a + b*sin(c + d*x))^2),x)
 
output
- ((6*a^2*b)/(a^2 - b^2)^2 + (2*tan(c/2 + (d*x)/2)*(4*a*b^2 - a^3))/(a^2 - 
 b^2)^2 - (2*b*tan(c/2 + (d*x)/2)^2*(a^2 + 2*b^2))/(a^4 + b^4 - 2*a^2*b^2) 
 - (2*a*tan(c/2 + (d*x)/2)^3*(a^2 + 2*b^2))/(a^2 - b^2)^2)/(d*(a + 2*b*tan 
(c/2 + (d*x)/2) - a*tan(c/2 + (d*x)/2)^4 - 2*b*tan(c/2 + (d*x)/2)^3)) - (2 
*a*atan(((a*(a^2 + 2*b^2)*(2*a^4*b + 2*b^5 - 4*a^2*b^3))/((a + b)^(5/2)*(a 
 - b)^(5/2)) + (2*a^2*tan(c/2 + (d*x)/2)*(a^2 + 2*b^2)*(a^4 + b^4 - 2*a^2* 
b^2))/((a + b)^(5/2)*(a - b)^(5/2)))/(4*a*b^2 + 2*a^3))*(a^2 + 2*b^2))/(d* 
(a + b)^(5/2)*(a - b)^(5/2))